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ABSTRACT: It is pointed out that there exist a few problems to be overcome toward an
observable sub-eV QCD axion in superstring compactification. We give a general expression
for the axion decay constant. For a large domain wall number Npys, the axion decay
constant can be substantially lowered from a generic value of a scalar singlet VEV. The
Yukawa coupling structure in the recent Zi2_; model is studied completely, including the
needed nonrenormalizable terms toward realistic quark and lepton masses. In this model
we find an approximate global symmetry and vacuum so that a QCD axion results but
its decay constant is at the GUT scale. The axion-photon-photon coupling is calculated
with a reasonable assumption on a realistic vacuum satisfying the quark and lepton mass
matrix conditions. It is the first time calculation of ¢, in realistic string compactifications:
Cavy= 5 — 1.93 ~ —0.26.
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1. Introduction and summary on superstring axions

The strong CP problem is, “Why is the QCD vacuum angle H_QCD so small at |§QCD| <
10797” Otherwise, strong QCD interactions violate the CP symmetry and then neutron
will develop an electric dipole moment of order 1073|fgcp|x (charge radius of neutron),
and the present upper bound on the neutron electric dipole moment d,, < 0.63 x 10~2°
[ restricts |0qcp| < 1079, There are a few solutions of the strong CP problem [B]: (i) Set

fqcp = 0 at tree level and guarantee that loop effects are sufficiently small, (i) m, = 0

e cm

method, and (iii) the Peccei-Quinn (PQ) mechanism. Axion solutions which we discuss
in this paper belong to Case (iii). The PQ mechanism [ff] introduces an anomalous (in
the QCD gluon fields) global U(1)pq symmetry. This must be an axial symmetry. Since
quarks are massive, the global U(1)pg symmetry must be spontaneously broken, generating
a Goldstone boson called axion [[l]. Currently, the phenomenologically allowable QCD axion



is a very light axion [[j]. A probable initial condition of the axion decay constant allows the
window, 10'° GeV < F, < 10'2 GeV. But, with the anthropic principle applied, the upper
bound can be further open [f]. In fact, our model presented here employs this anthropic
principle.

Axion models in field theory are artificial in the sense that the U(1)pq symmetry
is given for the sake of the PQ mechanism only. The PQ symmetry is desirable if a
consistent theory with an ultraviolet completion gives a natural candidate for axion. In
this regard, we consider string models. If a string theory predicts a phenomenologically
allowable axion, this may be a key prediction of string theory. This is welcome in view of
the scarcity of direct verifiable methods of ‘string’ nature. In fact, one attractive feature
of string theory is the natural appearance of axions from the antisymmetric tensor field
Burn. These superstring axions are split into two categories: one is the compactification
scheme independent one, called model-independent axion (MI axion) By, [fi], and the other
is the compactification dependent one, called model-dependent axion (MD axion) B;; [§].
However, these superstring axions are known to have some problems. Derived from string
theory, decay constants of these axions are expected to be near the string scale ~ 10'6 GeV
[, outside the aforementioned axion window. For MD axions, it is further known that the
shift symmetries of MD axions are broken at high energy scales [@] so that they cannot be
used as axions for rolling the vacuum angles to zero [{]. However, one should not forget that
such superpotential of MD axions is a model-dependent statement [[LI]. Recently, there
has been attempts to lower the decay constants in string models or in higher dimensional
models [[l3-[[d]. One approach is a large volume compactification to lower the fundamental
scale [1J]. Another approach is using the warped geometry to lower the scale. In heterotic
flux compactification, MD axions can be localized at a vanishing cycle which is warped
due to the flux so that we may have a small axion decay constant [[4]. Similar setup
has been discussed in a higher-dimensional model [[[§]. In other contexts, an axion in the
Kachru-Kallosh-Linde-Trivedi setup has also been discussed in [I{].

In this paper, we restrict the discussion on superstring axions to heterotic string only,
but the generic problem of axion mixing is present in any superstring axion models. For
the MI axion, the decay constant is near the scale ~ 10'® GeV [[]. Some string compacti-
fications such as the simple compactifications of refs. [[I7, L] do not lead to an anomalous
U(1), in which case the MI axion is harmful [J. Later, it was found that some string
compactifications lead to an anomalous U(1) gauge symmetry [[[9, B(]. This anomalous
symmetry can be gauged owing to the Green-Schwarz mechanism by which the antisym-
metric tensor field B, transforms nonlinearly under the U(1) symmetry so as to cancel
the anomaly [[[J]. This anomalous U(1) gauge symmetry is a subgroup of SO(32) or of
EgxE;. The Green-Schwarz term [RI] makes it possible for this anomalous U(1) gauge
boson to absorb the MI axion and become massive. Below this gauge boson mass scale
~ 10'6 GeV, there results a global symmetry U(1),,. This is a kind of 't Hooft mechanism
BJ. Under this circumstance, if some scalar field carrying U(1)., charges develop VEVs
around ~ 10" GeV, then we obtain a harmless very light axion by the PQ mechanism [J].
However, for this U(1)ay, the story is not that simple. Most light fields carry nonvanishing
U(1)an charges, and if one is forced to give GUT scale VEVs to those singlets for successful



Yukawa coupling textures, then the U(1),, breaking scale must be the GUT scale and
the resulting axion is again harmful. The QCD axion with this U(1),, has been exten-
sively studied without any hidden sector confining force in 23], where the Yukawa coupling
textures were not used. Moreover, this model is phenomenologically unsatisfactory since
sin? Oy < 3.

Most string compactifications need another confining force in the hidden sector for
the purpose of introducing supersymmetry breaking. Then, we need an additional global
symmetry to settle both QCD and hidden sector fs. As mentioned above, only the U(1)ay,
related to the MI axion, is a good one to consider below the string scale. Except this U(1)ap,
there is no global continuous symmetry resulting from string theory. For an additional
global symmetry, we are only at a disposal of approximate global symmetries from string
compactification. It is better for this approximate global symmetry to be broken by a
sufficiently high dimensional operators in the superpotential so that the symmetry breaking
superpotential is negligible compared to the axion potential derived from anomalies. This
idea was examined in a SUGRA field theory model with a discrete Zg x Zz symmetry [24].
But it has not been studied in string compactifications. A discrete symmetry is a good
guideline to make approximate symmetry violating terms appear at higher orders. If PQ
symmetry breaking scales are around the intermediate scale, it has been known that the
PQ symmetry breaking superpotential must be forbidden up to D = 9 terms [J]. But
this statement is an oversimplified one because higher order terms can involve some scalar
fields developing small VEVs or even not developing any VEV. So, the PQ symmetry
violating terms in the superpotential must be checked in model-by-model bases with the
prescribed sizes of VEVs. Note that for the terms breaking the global symmetry to appear
at a sufficiently higher order, we need a large N, presumably N = 12, in the Zy orbifold
compactifications.

By the way, the MSSMs from superstring need Yukawa couplings beyond cubic terms
BG-Rg. So far, there has not appeared any model where only cubic terms are sufficient to
give all the needed Yukawa couplings. So it is not unreasonable to require that for realistic
quark and lepton masses superstring models need nonrenormalizable terms beyond cubic
terms.

Thus, to realize a QCD axion in string compactifications, we must satisfy the following
conditions:

e One must work in a phenomenologically successful string derived model.

e One needs an additional confining group beyond QCD, and an approximate global
symmetry must be introduced. The MD axions cannot be used since the world sheet
instanton effects violate the shift symmetries of the MD axions.

e The Yukawa coupling structure must be studied carefully to derive the approximate
global symmetry.

e With two axions, the axion mixing effect must be clarified.

So far, there has not appeared any literature satisfying all the above conditions. In this
paper, we try to explore the possibility of satisfying all these conditions in the recently



proposed string MSSM [Rd]. We find a vacuum satisfying all of these conditions, but the
QCD axion decay constant falls in the GUT scale region and the adoption of the anthropic
principle seems necessary.

We emphasize the importance of the last condition which has been overlooked in many
superstring axion models. It is studied in refs. [R9, [4]. There is the cross theorem on
axion potential heights and decay constants. It is for the case of two #s with a complete
mixing of two axions by the higher potential that the smaller decay constant corresponds
to the higher height of the axion potentials and the larger decay constant corresponds to
the lower height of the axion potentials. It is shown for the case of two axions with the
MI axion and the MD axion corresponding to the breathing mode moduli [B0] where the
couplings are ~ a1 (FEF + F'F') 4+ ag(FF — F'F’). In fact, the axion mixing occurs when
both axions couple to the anomaly which give rise to the higher potential from instanton.
In the example of [B(], two anomalies couple to both axions and hence the condition for the
theorem is satisfied. In such cases, if the hidden sector axion potential is higher than the
QCD axion potential (as one might guess), then the decay constant of the QCD axion is
the GUT scale. Only when we realize the decay constant of the QCD axion around ~ 10!
GeV, it will be observable by axion detection experiments like the CAST of CERN [B]].

After solving the strong CP problem, we can consider a related, the so-called p problem
BY], derivable from the global symmetries of the MSSM. The common origin of a very
light axion scale and supergravity scale was pointed out early [BJ]. Phenomenologically,
the strength of the p parameter in —uH, Hy is required to be at the electroweak scale.
The first p problem is why it is forbidden at the Planck scale. The second p problem is
why it is of order the electroweak scale. There have been suggestions that if it is forbidden
at the GUT scale, it is expected to be generated at the electroweak scale in supergravity
models [B4] and in string models [B]. However, these solutions need some symmetry
anyway from the Yukawa coupling structure to forbid it at scales below the GUT scale
BEl. If many singlet VEVs are required at the GUT scale, then forbidding just H, Hy in
the renormalizable superpotential as done in [Bf] is not enough to exclude the p term at
the GUT scale.

In this paper, in addition we try to calculate the axion-photon-photon coupling ¢,y
in a realistic superstring model. For the MI axion, a mechanism to find out the global
U(1)an was explicitly given before B3] but a calculation of ¢4+ in that model has not been
meaningful because the model is not realistic due to sin? fy < % and there is no additional
confining force for supersymmetry breaking. Now we obtained a realistic superstring stan-
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dard model in a Zjo_; construction [R¢] and here we can calculate cqy, if there exists a
QCD axion.

We may introduce two scales (at Mgyt and 10! GeV) for breaking U(1)a, and an
approximate global symmetry U(1)g1a. The resulting approximate global current must be
anomalous in the gluon fields and/or hidden confining gauge fields. The axion mixing is
studied with the hidden sector axion potential.

In this paper, we pick up an approximate global symmetry U(1)ga in addition to
U(1)an. We use a computer program which is based on the Gauss elimination algorithm
to study all possible U(1) symmetries from any order of Yukawa couplings. A complete



analysis has been done for all Yukawa couplings up to D = 9 superpotential terms. We
calculate the phenomenologically important axion-photon-photon coupling constant c,y-,
ie. Coyy = g Or Cqyy~ —0.26. This is the first calculation of ¢,y from a realistic string
compactification.

This paper is organized as follows. In section ], we summarize briefly axion physics
related to the calculation of the axion decay constant. This involves a discussion on the
domain wall number of discrete vacua. In section fJ, we succinctly present the recent
Z5_1 orbifold model PG toward a computer input for the matter fields. In section [, we
summarize the Yukawa coupling structure and find the anomalous U(1)a, symmetry from
EgxE§ and an approximate anomalous global symmetry U(1)ga so that two s can be
settled to zero via the PQ mechanism. In section [, we calculate the axion-photon-photon
coupling by calculating anomalies. It is compared to the recent CAST experiment bound
B1]. Section [ is a conclusion.

2. Axion, domain walls and axion decay constant

The QCD axion a is defined to be a pseudoscalar particle coupling to the gluon anomaly,

a

~ v Qa ~
5 GG = -GG} (2.1)

where G is the dual of G*, the gluon kinetic term is (1/4¢2)G ,, G* and F, is the axion
decay constant. It is assumed that there exists the canonical kinetic energy term of a, i.e.
18,a0"a, and there is no potential for the axion except that derivable from Eq. (E).
Then, the minimum of the axion potential is at (a) = 0 [}, B7] which solves the strong CP
problem cosmologically in the present universe Bg]. We do not repeat the explanation of
the solution of strong CP problem using the axion in this section. For a complete review,
refer to [[f]. Here, we discuss some subtlety of determining the axion decay constant due
to the remaining discrete group after U(1)pq breakdown.

Because of the quantization of the integral of GG, the axion potential is periodic with
the periodicity 27 F,. In this form Eq. (R.1), the fundamental region of the axion vacua is
[0, 27 F,], because § = [0, 27]. Namely, starting from the vacuum (a) = 0, the next vacuum
occurs by shifting (a) — (a) + 27 F,. But the vacuum at (a) = 27 F, may not be the same
vacuum as the (a) = 0 vacuum, but returns to the (a) = 0 vacuum only after the shift
a — a+ 2r Npw F,. Then there are degenerate vacua whose number is called the domain
wall number Npw [BY. In other words, the axion embedded in some fields may not return
to its original value when one shifts a — a + 27 F,,, which is the reason for the appearance
of degenerate vacua. There is another degeneracy from the scalar field space. Suppose, the
axion a embedded in the phase of a scalar field as ¢ = [(v + p)/v/2]e’*/V where ¢ carries N
units of PQ charge. The field ¢ returns to its original value by shifting a — a + 27v. But
the phase factor becomes identity for IV distinct points of 0 < a < 27wv. This is related to
the domain wall number calculation. If we define the PQ charge @ such that ¢ carries one
unit of ¢ and the anomaly calculation leads to 8MJ§Q = n{Gé}, the phase a couples to
the anomaly as %n{GG} Since ¢ is defined such that it comes to the original value by the
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(a) (b)
Figure 1: Illustration of degenerate vacua for N3 = 4, Ny = 2. Bullets and circles correspond to
minima of the axion potential. (a) Npw is two, the vacua connected by solid and dashed lines. (b)
The fundamental length (the arrow) in the fundamental region corresponds to the decay constant
which is F,, = V/NpwT.

PQ transformation or the shift of a by a — a + 27v, viz. @@ = 1, this interaction defines
F, = v/n. Here, the domain wall number is Npy = n.

On the other hand, if we are required (by the PQ charges of the other fields) to define
the PQ charge of ¢ as I" which is a positive integer greater than 1, then aﬂng = Fn{Gé},
and we expect the axion decay constant F, = v/nI'. But the domain wall number defined
from vacuum structure is a topological one and still we should obtain Npw = n. This
situation is illustrated for Ny = nI' = 4 and N, = ' = 2, i.e. with n = 2 in Fig. [I}
Certainly, the minima of the axion potential has two distinct sets in Fig. [[[(a), the set of
bullets and the set of circles, represented by the connections with solid and dashed lines,
respectively. These two sets agree with our original domain wall number, Npy = n = 2.
This domain wall number is obtained from Nj (the coefficient of anomaly) by dividing it
with the greatest common divisor of N7 and Ns. In Fig. [[(b), we show how our Fj is
related to the original VEV.

Having specified the domain wall number, it is important to pick up the properly
normalized axion field toward calculating the axion decay constant. Consider two fields ¢
and ¢o. In the unitary gauge, we can express the Goldstone bosons in the phases of ¢; and

¢2 as

¢1 = Vl;ip—l MM gy = VQ;;—Z e 2/V (2.2)
whose PQ charges are I'y and I's, respectively. Now we can restrict the phase fields A, =
[0,27V1 /T'1] and Ag = [0,27V5/T'e]. If we are sitting in one domain, say on the solid line (or
on the dashed line) of Fig. [l for reinterpreting the figure with A; and Ay directions with
I'y =4 and I's = 2, A1 and A completely define the allowed field space in that domain.
Thus, we can represent the fields in one domain as

Vi+pr 2nV;
b = 1@/’1 G/ A = o, %} (2.3)
. 2
by = Va+p1 etA2/(2/2) 4, — |0, ”VQ]_ (2.4)
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The relevant VEV for axion is \/42‘/12 + 22V22. The axion direction in terms of ‘A’s is
4A142A9

04 = .
A /42V12+22V22

the axion coupling is given by

Suppose that the gluon anomaly were just one unit of {Gé} Then,

4A1 +2A5
VARVE + 22V
With the shifts of A1 — A; + 27V; and Ay — Ay + 27Va, viz. Fig. [l, the field space ends
at the other domain, i.e. A; shifted such that § changed by 47. So to maintain the fields

in the same domain with 6 = [0, 27), we use A; = 2a; such that a; — a; + 27w F;. Thus, we
have F; = V;/2. Thus, the coupling (R.§) can be rewritten as

{GG} (2.5)

2(4&1 + 2(12)
VARVE 4 22V
where the overall factor 2 appears as the greatest common divisor (GCD) of I'; and T's.

For one field VEV dominating the other, e.g. the DFSZ model with a large singlet VEV
(s%) and a small doublet VEV, the dimensionless axion component is in fact a1/(s’) and

{GG} = 2(dimensionless axion component in the phase){GG}  (2.6)

the axion decay constant is F, = (s°)/2.

If we consider the domain wall number from the gluon anomaly also, that effect should
be considered in addition and an appropriate factor must be multiplied to Eq. (2.6). If the
anomaly coefficient N(anom.) from the gluon anomaly and N (phase) from a multitude of
phases are relatively prime, then the domain wall number is simply N (anom.). But if they
are not relatively prime, we must divide it by the greatest common divisor of N (anom.)
and N (phase). Therefore, a general expression for the axion coupling can be written as

Now - l?/GCD(phase) a{GGY (2.7)

where Dgcp is the greatest common divisor of PQ charges of the relevant VEV-carrying
fields, and the topological number Npy is calculated as in figure [I(a) from the coeffi-
cient of the anomaly and the phase degeneracy, i.e. Npw = N(anom.)/Dgcp (NN (anom.),
N (phase)). The normalized axion field is defined as

o _ il (2.8)

where I'; is the U(1)pq charge of s;, V; is the VEV of scalar field (s;), and Vipax is a typical
scale of VEVs breaking the global symmetry. In many cases it is the maximum value among

(si). For example, for the case Vipax > Vi(i # max) and also for Vipax = V;(for any i). Then

the axion decay constant is
Vmax

~ Npw - Dacp
Note that if Npw - Dgcp were large, then F,, can be lowered significantly compared to the

F, (2.9)

PQ symmetry breaking scale.
The discussion of this section will be used in section [f in estimating the decay constant

of the QCD axion from superstring.



3. Zy5_; Orbifold model

In this section, we briefly summarize the key points of a realistic string-derived minimal su-
persymmetric standard model (MSSM) from a Zio_; orbifold compactification [26]. Here,
the low energy effective theory contains the MSSM. We discuss vacuum configuration of the
MSSM singlets for realistic low energy phenomenology, especially toward the absence of ex-
otic matter spectra and general formulae for realistic Yukawa couplings. These formulae are
used in the program to generate all Yukawa couplings. We pick up the anomalous gauged
U(1), U(1)an, and approximate global U(1)s which appear in general in lower dimensional
superpotential terms. For gauged U(1)s, the gauge U(1) directions can be assigned in the
EgxE{ group space but for the approximate global U(1)s it cannot be represented in that
way. The only method for approximate global U(1)s is to list the U(1) charges of the
matter fields.

3.1 Flipped SU(5) matter spectrum and Yukawa couplings

In the orbifold compactification in heterotic string theories, the action of twisting is rep-
resented as a shift vector V(I = 1,2,...,16) and Wilson Lines a!(i = 1,2,...,6;1 =
1,2,...,16). In the Zj15_; orbifold model discussed in [2(], we choose SU(3)xSO(8) lattice
for toroidal compactification and

V=31 EH0) (54000000 1)
az=as= (005 1)(0020°) (3.2)

Then, below the compactification scale one obtains the following unbroken gauge group
[SU(5) x U(1)x x U(1)3] x [SU(2) x SO(10) x U(1)?]’. (3.3)

The spectra for the unbroken subgroup SU(5)xU(1)x is in fact the flipped SU(5) model
[2G]. The matter representations under the nonabelian gauge groups SU(5), SU(2)" and
SO(10)" are simply determined by embedding the momenta P of EgxE§ group space into
the weight space of the corresponding subgroup. The U(1) charges for matter fields are
determined by

¢4 =2Z;- (P4 k(V+myaz)), (3.4)
where ¢ = X,1,2,3,4,5 denotes each U(1) gauge group and k corresponds to the orbifold
twist number of k-th twisted sector and m; is the Wilson line twist number applicable only
to the second two-torus, viz. (B.4). Z; are the following EgxE§ weights
= (2,2,2,2,2;0%)(0%)

(0°;1,0,0)(0%)
(0°;0,1,0)(0%)
(0°;0,0,1)(0%)
( )
( )

© 0 N o W

~— ~— ~— ~— ~— “—

= (0%)(1,1;0;0%)
0%)(0,0;1;0%)".

W o~ ~ —~ —~

A
Z
Z3
Zy
Zs
Zg



We will rearrange these U(1)s when we consider the gauge anomalies of the model com-
pletely.

The 4D Lorentz symmetry representation is solely determined by the right-mover
oscillators. Since we have supersymmetry in the low energy limit, we consider either
the fermion spectrum or the boson spectrum. Consider the fermion spectrum. It is
determined by the Ramond sector vacuum of the right movers which is SO(8) spinor
s = (s0,8) = {£3,+3,+1 £1} with an even number of minus signs. The 4D chirality
x is the first component of s, and we call y = % the right-handed field and x = —% the
left-handed field.

Matter spectrum must satisfy the mass-shell conditions :

2
@jLZN]L@j_g:o, (3.11)
J
2
% S NEG —e=0, (3.12)
J

where j runs over {1,2,3,1,2,3} and ¢; = k¢; and ¢; = —k¢; where = denotes one plus
the maximum integer smaller than the original real number. Here N jL and N jR are the
oscillator numbers, and ¢ and ¢ are the zero point energy of the right mover and left mover,
respectively.

By the modular invariance, the matter spectrum satisfying the above mass shell con-
ditions can be further projected out and have multiple copies of themselves. This can be
summarized by one-loop partition function. The correct formulae are reviewed in [,

1 N Ny —1
_ ~/rnk pl 2milO
Pk_ﬁlzgx(e ,a)N_W fzg 27ilO; (3.13)

where N is the order N in the Zy orbifold, Ny is the order of the Wilson line, 3 in our
case, and
A k -
Op =D (N} = N9dj = S(VF =) + (P +kVy) -V = (5 + k) - 6 (3.14)
J

where ¢; = (bsisgn((gi) and Vy = (V 4+ mya). Here, X(0%,0") is the degeneracy factor
summarized in [R6]. Py is interpreted as the multiplicity of the spectrum. Thus, if Py = 0,
then the field is projected out by the modular invariance. Multiplicity Py implies that the
same matter spectra occur at different orbifold fixed points. The resultant matter spectrum
of this model is presented in table [l and P

We summarize the left-handed matter field spectra,! by classifying them under the
flipped-SU(5) and SO(10)’,

U: (15+53+10-1)r5, (52)rp, (1-5+53+10-1)p,, (Lo)vs, (3.15)

"We show only the left-handed spectra. The right-handed spectra are just their PCT conjugates.



Name SUB)u (1) U(1)° P Name SUB)u 1)y U(1)® P
xSU(2)’ xSU(2)’
Untwisted Twisted 6
U3s (53,1) (6,6,6,0,0) 1 T65 (53,1) (6,0,0,0,0) 2
T65 _3,1) (-6,0,0,0,0) | 2
U3y (10_1,1)  (6,—6,—6,0,0) | 1 T615 (10-1,1) (6,0,0,0,0) 4
T610 (104,1) (-6,0,0,0,0) 3
U3, (1-5,1) (6,6,6,0,0) 1 || T61s,T61s (155,1) (£6,0,0,0,0) | 2,2
U2s (52,1) (-12,0,0,0,0) | 1 hi, h (10,1) (0,£6,46,0,0) | 4,2
st (10,1) (0,0,0,24,0) 1 ha, ha (10,1) (0,£6,46,0,0) | 2,3
Ulp (10_,,1)  (6,6,6,0,0) | 1 hs, hs (10,1) (0, £6,+6,0,0) | 2,4
Uls (53,1) (6,-6,-6,0,0 ) 1 ha, ha (1o,1) (0,46, +6,0,0) | 3,2
Ul (1-5,1) (6,-6, -6,0,0) 1
Twisted 1 Twisted 7
Tlsa (37%, 1) (-7,6,0,4,0) 1 T7s4 (5,%, 1) (-7,0,-6,4,0) 1
Tlsp (5_1,1) (5,-6,0,4,0) 1 T7:5 (5_1.,1) (5,0,6,4,0) 1
T1s (51.1) (-1,0,6,4,0) 1 T7s (51,1) (-1,-6,0,4,0) 1
Tlia (1_5,1) (-7,-6,0,4,0) 1 T714 (1_5,1) (-7,0,6,4,0) | 1
Tlis,c (17% ,1) (5,6,0,4,0) 1 T7iB,c (17% ,1) (5,0,-6,4,0) 1
T11p (15,1) (11,0,6,4,0) 1 TTip (15,1) (11,-6,0,4,0) 1
Thierc (15.1) (-1,0,-6,4,0) 1| Therc (15.1) (-1,6,0,4,0) 1
5 (1_5,2) (5,2,4,-8,-4) 1 03 (1_5,2) (5,-4,-2,-8,-4) 1
T, (1_%, 1) (5,2,4,4,8) 1 T7H (1_%, 1) (5,-4,-2,4,8) 1
82 (15,2) (-1,-4,-2,-8-4) | 1 4 (15,2) (-1,2,4,-8,-4) 1
T1{p (1g,1) (-14,-248) |1 T7p (1g,1) (-1,2,4,4,8) 1
T1; (51,1) (-1,4,2,4,-8) 1 T7; (51,1) (-12,4,4,-8) | 1
1], (1_5,1) (5,-2,8,4,-8) 1 T77, (1_g,1) (5,-8,2,4,-8) 1
Tl (1_g,1) (-7-2,-4,4,-8) | 1 T71s (1_g,1) (-7,4,2,4,-8) 1
T, (15.1) (-1,-8,2,4,-8) 1 T7.o (15.1) (-1,-2,8,4,-8) 1
Table 1: Spectrum of the Kim-Kyae Z15_; model: 1. U sector and 76,71, T7 sectors.
from the untwisted sector, and
Te : 10_1 + {2(1_5 + 15+ 5_3 + 53) + 3(10_1 + 101) } + 22{10}, (3.16)
Ty : 1.5+ 53+ 11{1p} + 4D + 010 + O16, (3.17)
Ty : 5_24+2(5_2 +52)+30{1p} + 12D, (3.18)
Tyo: 2(5_1)+2(5,1) +6(1_5)+6(1,5)+ (D1s)+ (D1_s), (3.19)
Tr o+ 2(5,.1) +2(5_1) +6(15) +6(1_s) + (D1,5) + (D1_s), (3.20)

where D denotes a doublet of SU(2), and 010 and O16 mean 10 and 16 of SO(10)’,
respectively. From the hidden sector, there are twenty SU(2)" doublets and one 16 and
one 10’ of SO(10)’. Note that matter fields from T1 sector and T7 sector have exotic
representations which are not present in the MSSM. We name them by G-exotics for

(anti)-fundamental representations of SU(5) and by E-exotics for singlets of SU(5) but

with nonvanishing U(1)x so that they have exotic U(1)en charge.
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Name | SU(5)y)x U(1)° P || Name | SU(5)p 1)y U(1)® p
xSU(2) xSU(2)

Twisted 2 Twisted 4
T2s5 (53,1) (-2,0,0,8,0) | 1 | T4s (5_2,1) (-4,0,0-8,0) | 3
T2, (1_5,1)  (-2,0,0,8,0) | 1 || T4z (52,1) (-4,0,0-8,0) | 2
Cty (10,1) (46-680) |1 59,5 (1o,1) (8,0,0,-8,0) | 2
C3, (1o,1) (4,-6,6,8,0) | 1 59 (1p,1) (8,0,0,16,0) | 2
Ccy (1o,1) (-8,6,6,8,0) | 1 59 (1g,1) (-4,12,0,-8,0) | 2
cy (1o,1) (-8,-6,-6,8,0) | 1 sy (1g,1) (-4,-12,0,-8,0) | 2
9 (10,1) (4,-6,6,-16,0) | 1 s9 (1o,1) (-4,0,12,-8,0 ) | 2
59 (1o,1) (-4,0,-12,-8,0 ) | 2
T2/ (1o,1) (4,-2,2,-4-2) | 1 df (10,2) (8,-4,4,4-4) | 2
DY, (10,2) (4,2,-2,-4,-4) | 1| df (19,2) (-4,8,4,4,-4) | 2
Cr (1o,1) (4,2,-2,8,8) ds (19,2) (-4,-4,-8,4,-4) | 2
st (1p,1) (8,-4,4-88) | 3
sy (1o,1) (-4,8,4,-88) | 2
sy (1p,1) (-4,-4,-8,-8,8) | 2
12510 (10,1) (4,2,-2,8-4) | 1| df (10,2) (8,4,-4,4,4) | 2
Dy, (10,2) (4-2,2-44) | 1| dy (10,2) (-4,-8,-4,4,4) | 2
Cla (1o,1) (4,2,2,8-8) | 1| dy (10,2) (-4,4,8,4,4) | 2
Cy (10,1) (4,2,-2,-16,8) | 1| sy (1g,1) (8,4,-4,-8,-8) | 3
Sy (10,1) (-4,-8,-4,-8,-8) | 2
sy (10,1) (-4,4,8-8,-8) | 2

Table 2: Spectrum of the Kim-Kyae Z1> model, continued: 2. T2 and T4 sectors. Here, O16 and
010 mean 16 representation and 10 representation of SO(10)’, respectively.

The superpotential terms are obtained by examining vertex operators satisfying the
Z5_ orbifold conditions [, [lI]]. It can be summarized by the following selection rules:

e H-momentum conservation with ¢, = (%, 14—2, %)

Y Ri(z)=-1mod 12, Y Ry(z)=1mod3, » Rs(z)=1mod 12, (3.21)
Z z z

where z(= A, B,C,...) denotes the index of states participating in a vertex opeartor.
e Space group selection rules:

> k(z) = 0 mod 12, (3.22)

Z [kmy] () = 0 mod 3. (3.23)

z
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Mass terms for vector-like representations

s9,  s“s9,
ey AT 0 L | ] A At
roume, | CRRCRC T2 T2 o
Cg5254(Cghs + C5h1)
p terms
$9s9, s%s9s9, 5953 (hah1 4 hihs)
s“sgsg (hgiLl —+ hliLg), DTD;SQ(}MFL;; + h4B1), DTDQ_ Sg(hzflg + hgiLz),
T45U25 x CS55(s3s3h1 4 df dT ha + ss8h1 + dF dy ha),

0.0.0.0 0.0.0_0 0.0 7+ j—
06828284]13, C’3818488h37 CgSldS dl hg,
0.0.0.07 0.0.0_0%7 0.0 3+ 3—7
05 828284]117 03818485}13, 0381d2 dl hg

Mass terms for G-exotics (T'15, 715,175,175 , 7154, T155,T754,T 755 )

T15_T15A>< Sfﬁg T15_T75A>< Sr(l +h1flg —‘rhgfll)
T1;TTspx  CSCY(s9s3sT + s357s7) TT75T1sax  s3(1 + hahi + hihs)
T75Tlsax  s7(1+ hghi + hihs) T75TTsax  (s5h1 4+ C9sYs + D D3 h2)
T7;TT54% thl T75T15p X C’gsg(sghg + Sg}_lg)
T7:Tlspx  COCO(s%sdst + s3sTsT) T7sTTspx  CY ( Sgs(?}gl_hlf shsihiln )
+s5s5h1h1
Mass terms for E-exotics
TlfCT'?lAX df(l + hgf_Ll + h1;),3) TllET7;B X Sf(l + hgill + h1;),3)
T1gTT71BX CQC? T118T11E X (C’gsgsg + 0?828(7) + C’QC?ES)
T1:8T11p X (Cgsgsg + C’gs;s;) TlTDT71A X (Sl_hghg —+ 81_ hziLg)
TTiTTipx  (COs3s? + Cosfsy) TT1aTTicx  ha(CIC? +CFC3)
TTipT7{zx CQshsy T114T7{ox  di haha

T11aT7 5 x  s7 (hsha + hahs) TT1sTTH,x

0.0_.— 0.0_.—
028782 +068183
0.0.— 0.—o—

+C9sgs; + C585 85

Table 3: Superpotential terms relevant for phenomenology: 1. Mass terms for vector-like repre-
sentations (u-like terms), G-exotic fields and E-exotic fields, and the p terms for H, and Hy. We
represent superpotential terms up to dimension 5 only for mass terms of E-exotic fields since there
are too many terms from dimension 6.

The H-momenta for Zo_; fields are

Up:(=100), Us:(010), Us:(001),
n:(Fiw) B:(Fsg) B:(z0F) (3.24)
(7353 Bilpwmw) Hi(703)

Now we present superpotential terms relevant for the low energy phenomenology. Such
terms include the mass terms for the exotics, the p terms and the Yukawa couplings. We
summarize them in tables fj] and [

3.2 Hidden sector SO(10)’ and SU(2)’

There are two hidden sector nonabelian groups, SO(10)" and SU(2)’. Inspecting SU(2)’
matter spectrum, there are twenty SU(2)" doublets: d1, d2, d3, 4, Df, Dy, D;, Dy, df,
dy, d;, dy , d;,ild ds . Inspecting the SO(10)’ matter representation, we find only a single
SO(10)’ spinor 16" and a single SO(10) vector 10’. Since there are four nonabelian gauge
groups in total after the flipped SU(5) breaking, it seems that we need to consider four 6
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Yukawa Couplings

Generation Matter
1 Ulg, Uls, Uly
2 U3y, U3s, U3y
3 T615, T25, T2
(i,j) 10,105y (i,j) 10,555
(3,3) T6T61U25 x {1, h3h1, hihs} || (3,3) | T61T25T45 x {1, hghy, h1hs}
(3,2) T61U31U25h (3,2) T61U35T45CY
(3,1) T61UlipU2shs (3,1) T6U15T45C?
(2,2) U3U31U2sh1hy (2,3) U31oT25T45h
(2,1) U3ioU1lpU2s x {1, h3hy, hihs} || (2,2) U31U35T45Chy
(1,1) UlpUlpU2shshs (2,1) U31U15T45C0hy
(1,3) UlyyT25T45h3
(1,2) UlpU35T45C0h;
(1,1) UlpU15T45C%h;
(i,j) 51,54
(3,3) T2572,U255959
(3,2) T25U3,U2559h,
(3,1) T25U1,U2559h3
(2,3) U35T2,U2559h
(2,2) U35U3,U2sh1hy
(2,1) U35U1,U25 x {1,h3hy, hih3}
(1,3) Ul5T21U2555h3
(1,2) U15U31U25 X {1, hgill, hlilg}
(1,1) UlsU1,U25h3hs

Table 4: Super potentential terms relevant to the low energy phenomenology continued: 2.
Yukawa couplings of MSSM matter fields.

parameters, those of SU(3)., SU(2)y, SO(10)" and SU(2)". In fact, among those, we need
to consider only SU(3). and SO(10)" because SU(2)y is broken at the electroweak scale
and we assume that SU(2)" is broken. For SO(10)’, here we just assume that a subgroup
of SO(10)" confines at an intermediate scale since the hidden sector dynamics is not well
understood yet at present.

4. Approximate U(1)pq symmetry of Z;;_; model

In this section, we find U(1)pq symmetries allowed from the superpotential terms in the
Z15_; model. To all orders, only gauge and discrete symmetries can remain valid since
string theory a priori does not impose any continuous global symmetry. However, at a cer-
tain order of the effective Lagrangian, the theory can have approximate global symmetries.
Such approximate symmetries are not given from the first principle, and thus we have to
enumerate allowed symmetries by reading all superpotential terms. To do this, we have
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made a computer program which enumerate all the allowed potential terms and continuous
abelian symmetries at a given order.

If we assign U(1) charge g; for each field ®;, a superpotential term W; o Hj(q)j))‘iﬂ' has
U(1) charge > i Aijq;, where \;; represents the number of occurrences of the field ®; in the
i-th superpotential term. Thus, the algorithm for finding out U(1) charges is basically the
same as finding eigenvectors with zero eigenvalue of the matrix AT\ It is remarkable that
we can find the eigenvectors exactly (without any numerical error) since the eigenvectors
can always be represented by integer-valued vector due to the fact that the matrix AT\ has
only integer-valued components and we are only interested in the eigenvectors with zero-
eigenvalue. Eigenvectors with zero eigenvalue can be obtained by the Gauss elimination
method: By multiplying

or . (4.1)

onto AT\, the eigenvector solutions are not changed. Using such operations, one can reduce
the matrix up to the following upper triangular form 2

ailp ai2 +++ AiN
0 , (4.2)
0 -~ 0 anw

where N is the total number of field species, the diagonal element a;; is either 1 or 0,
a;; = 0 when a;; = 0 and a;; = 0 when a;; = 1. Denote nonzero element of a;; by b, where
r runs over k indices of nonzero diagonal elements and « runs over N — k indices of zero
diagonal elements. Then, the eigenvectors are

{qrlga} = {(=by1)  |100...0}

)
{¢rlga} = {(=br2)  [010...0} )

W

(4.

(4.

N (4.5)

{QT|QO¢} = {(_br(ka))w"' 1}a (4'6)

where g, are the eigenvector components of the r-th element with nonzero diagonal element
for the above matrix, and g, are those of zero diagonal element.

We have found all the superpotential terms up to dimension 9. From these, we have

found U(1) symmetries using the algorithm described above. Certainly, six of them are

2Note that we cannot make the matrix be the identity since the matrix is not invertible.
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U(1) gauge symmetries. Obtaining all the gauge anomalies, we rediagonalize the gauge
symmetries according to the anomalies:

Qx =—2

Q1= 22+ 623

Q2= —Z2+ 624 (4.7)

Qs =25

Q4 =225+ 375

Qan = —620 + Z3 — Zy + 475 (4.8)
Five U(1)s of (3), U(1)x,U(1)1,---, and U(1)4, do not carry any gauge and grav-

itational anomalies while the U(1),, of ([£§) is anomalous. Therefore, this model has
an anomalous gauge U(1) which can be consistent only with Green-Schwarz mechanism
1, [[9). Note that the anomaly check is very nontrivial, and hence this gaurantees the
matter spectrum shown in Table ] and [ is correct. Low energy fields and the anomalous
gauge U(1),y, charges are listed in Table . D, d, and ¢ fields are SU(2)" doublets. One can
casily check that the U(1)an-SU(5)-SU(5), U(1)an-SU(2)'-SU(2), and U(1).,~SO(10)'~
SO(10)" anomalies are universal, which is required by Green-Schwarz mechanism.

Up to dimension 7, we find one global U(1) symmetry which does not belong to the
above gauge symmetries. This accidental global symmetry must be broken at still higher
order superpotential terms. We discuss it in Subsec. .4

The anomalous gauge U(1) induces the Fayet-Illiopoulos term. D-flat condition for the
anomalous U(1),y is required to be

(D) = <1922‘(;2 Tr Xoan + ZXan(2)¢*(2)¢(Z)> = 0.

Some singlet fields get VEVs to satisfy the above equation, breaking some U(1) symmetries.
But we will not focus on the details of this mechanism. Below, we try to find a vacuum
(or vacua) realizing a QCD axion. For this objective, certainly we will choose some VEVs
of singlet scalar fields. In doing so, we will restrict such that all the known low energy
phenomena such as fermion masses are reproduced. So, we will consider Qem= %, —% quarks
and charged leptons. Neutrino masses are not considered here since the mass matrix is too
gigantic because of the appearance of numerous singlets.

We must assign GUT scale VEVs to some singlets for successful Yukawa couplings.
The singlet field combinations which appear in the Yukawa couplings must have GUT scale
VEVs generically. Since the exotic fields which appear in T'1 and T'7 sectors must have the
GUT scale mass not to spoil the gauge coupling unification, the singlet fields in those mass
term must be of the order the GUT scale also. Note that they should satisfy F-flatness
and D-flatness condition which is quite nontrivial [Rg.

4.1 Exotics

There are two kinds of exotics, G-exotics and E-exotics. They are named according to
SU(5): G-exotics are SU(5)x (anti-)quintets and E-exotics are SU(5) singlets (with non-
vanishing X charges).
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fields  Q.n | fields  Qan | fields Q. | fields Qan | fields Qan

U3 3| U3y 3| U3t 3| U2 6 Ulyg -3
Uls -3 Uly 3| Tlsga 4 | Tlygg -3 | Tlia
Thp 2| The 2| Thip 6| Thir 1 Tl 1
The 1 3 —4 82 -1 | T1f, T1; -2
T, 6 | Tl 1| Tl 3| T2 1 T2, 1
T2 3| T25, 3 cy -1 cy -1 3 -3
Cy -3 o 4 Cy 4 o -3 Dy -1
Dy -1 Cy -5 Cy -5 | Cy 1 Df -3
Dy -3 c 1 Cyf 1 | T45(3) 2 | T45(2) 2
s92) 4| 5@ 4| %2 4| S22 4| 22 3
s9(2) 2 1| s32) dr(2) 6| sf(3) -2

T615(2) 3 | T7sa 4 | TT7sg -3 | TTha
The 2| Thp 6 | Thg 1 | Thp
83 4 84 -1 | 17, 3 | TTy 2| T7, 6
Ty 1 | Ttz -3

Table 5: Non-vanishing U(1),, charges. Fields ®(P) denotes the multiplicity P in case P > 1.

4.1.1 G-exotics
We have 4 pairs of G-exotics from T1 and T7 sectors:

51/9: Tl5, T1F,T75, 175

g71/2 : T15A7 TlSB7 T75A7 T753
In terms of SM gauge group SU(3)c x SU(2)r x U(1)y, they transform as 51/, — (3, 1)% +
(1,2) and 5_y/5 — (3,1)_1 + (1,2)o. In Table [, we show the mass terms for G-exotics

6

up to dimension 7. Some mass terms at dimension 6 and 7 are omitted if there are lower
dimensional terms of the same type since they are too many. All those mass terms which
do not appear in Table [] have terms at dimension 8 except for T15T155 and T15T75p.
4.1.2 E-exotics

There are sixteen E-exotics. It is not wieldy to calculate the determinant of the E-exotics
mass matrix. Therefore, we first find out approximate U(1) directions from other Yukawa
couplings and then look for the E-exotics mass matrix under this phenomenologically
needed setup.

4.2 Vectorlike pairs

Another consideration is the mass terms for the following vector-like pairs,

(T65,T65), (T610, T615), (T617,1615), (T'45,T45). (4.9)

,16,



The vector-like pairs in T'6-sector of (f£.9) are exactly vector-like under all gauge symmetries.
Also, they have exactly the same H-momenta, which means that all the vector-like pairs
(T65,T65), (T610,T61), (617, T61.5) satisfy the same selection rules for the superpotential.

To break the flipped SU(5) down to the SM gauge group, vectorlike pairs 10 + 10 of
T6 must develop VEVs. Here, note that the multiplicities are different: P(10) = 4 and
P(10) = 3. One 10 is not matched and it becomes the third family member called 10;
of the SM. Thus, the coupling allowed by T676 is restricted to three vectorlike pairs of
10 + 10, and 10; carries an independent phase. At the lowest order, the resultant mass
terms for three vectorlike pairs are presented in Table f]. Those two terms involve the
hidden sector matter fields T2$T6 and 125, T Qgﬁ cannot have a VEV at the GUT scale
since it leads to the D-term SUSY breaking at that scale. A VEV of T2, has no problem
with SUSY breaking, but here we do not assume about the symmetry breaking pattern
in the hidden sector. At dimension 9, which is next to the lowest order, there are many
terms inducing mass terms for the vectorlike pairs. In this paper, we do not show all the
dimension 9 terms since there are too many of them. Since we will argue that C’g and Cg
must have a VEV near the GUT scale as shown in Subsec. [£.3, we show the mass terms

involving C? and C§:

T610T610 + .0 + .07,
h h
T65T65 § x CICOC0sy x { F s+ s2sins L (4.10)
+s3 5301 + 55 5301
1617161

Therefore, if a combination of (CY, s, s3 or s3, s{ or s3) has a O(Mgyr) scale VEV, the

vectorlike pairs can have O(Mgur) scale masses.

4.3 SM Yukawa couplings
4.3.1 Qem = % quark masses

In the 10;5;55 couplings of Table |, we can read off that the following singlet field must
develop near GUT scale VEVs to have a realistic Qem = % mass matrix,

hi,hy, hs, hs, CY, CP. (4.11)

To achieve the hierarchy % ~ 107% among up-type quarks, some of the singlet vev might
also have hierarchically small values ~ 1073 My;.

4.3.2 Qem = —% quark masses
According to Table [i, the following singlets are required to develop near GUT scale VEVs
toward a successful Qe = —% mass matrix,

hl, Bl, h3a 53' (412)

These fields can have GUT scale VEVs and by some fine tuning we can obtain realistic
Qem = —% quark mass matrix.
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4.3.3 Qem = —1 lepton masses

Finally consider the charged lepton mass matrix. According 5;1;55 couplings of Table H,
the following fields are likely to have some VEVs of order Mgyt ~ Mr:
hi,h1,hs, h
1 15035 3 (413)
82

Out of these, s is required not to obtain a GUT scale VEV but a somewhat smaller
scale at Mpy. The GUT scale VEVs themselves may have a small hierarchy to fit to the
experimental values for masses and mixing angles. The reason for choosing a smaller VEV
for sJ is the following. The charged lepton matrix 5;1;5y from Table [J is proportional to

(5pr) times
O O O 3232 $2h3 B
M,~ |0 hshs L+ hihg+hihs |+ | s 0 0 |, (4.14)
01+ Blhg + hlilg iLliLl S(Q]Bl 0 0

where we separate the mass matrix into the leading term and the perturbation in powers
of 5. Eigenvectors of the left s independent matrix are (1,0,0)” with eigenvalue zero?
and the others which has the component only in the second and the third elements. This
implies that the change of eigenvalues for the second and the third eigenstates are vanishing

in the first order perturbation. Three eigenvalues in this order are given by

me = (59)°

0
2
my = % <h3h3 + Blﬁl - \/(hghg - B1B1)2 + 4(1 + Blhg + h153)2) (415)

me = % (hshs + B + v/Thshs — han)? + 401+ hahg + hahs)?)

However, for me, the second order perturbation will also give (s9)? order contribution, so

we have to consider O((s9)?) for an accurate estimate of electron mass.

4.3.4 pu term

Finally, let us examine the p-term among the relevant low energy couplings. Since the
1 parameter must be of order the electroweak scale which is negligible compared to the
string scale, the p parameter is presumably protected by a global symmetry [Bf]. Under
U(1)an and U(1)g1a, T45U25 is not invariant, and hence the p-term is generated by some
symmetry breaking VEVs of U(1)a, and U(1)ga. Up to dimension 7, we find that the pu
term related couplings are the following

5959, 595959, 8958 (hghy + h1h3), s%s9s9(hsh1 + hihg),
DTD_ O(hlﬁ;l + h451) D+D_ O(hgﬁg + hgﬁg),
T45U25 x Cgs3(s4sgh1 + d+d hi + sgsghl + d+d751), (4.16)
Cs9s3s%hs, C. 51545gh3, C9sVdd dy hs,
C95959s%h1, C9sVsYs0hs, COsVdy dy hy

3The state (1,0,0)” will be interpreted as the electron.
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These p terms satisfy the U(1),y symmetry. Since T'45U25(i.e.H,Hy) carries 8 units of
the U(1)a, charge, the multiplied factor carries —8 units of U(1),, charge. If the singlet
fields multiplied are flat directions, we can determine their VEVs by the minimization. For
simplicity, we discuss the first two terms. Since the VEV of 745U 25 is nonzero, the factor
5959 + s%(s9)? must choose the minimum. If the VEVs of s9, s} and s“ is not determined,
probably being flat directions, this u term determines a relation between s9,s{ and s*
through the minimization condition. It is s§ = —s9/2s% with the result p = —(s$)?/4s%.
Since the electron mass is ~ (38)2, we take sg ~ 10" GeV. Then, the electroweak scale j
is obtained for example for s§ ~ 10° GeV with an intermediate scale s* ~ 1012 GeV. Of
course, if they are not flat directions, their VEVs are determined by other more important

terms.

4.4 Approximate global symmetry U(1)ga

Before proceeding to discuss the global symmetry and used it for a PQ symmetry of the
QCD axion, we first discuss the difficulty of U(1)pqg with the intermediate PQ symmetry
breaking scale around 10'°~12 GeV in Zy5_; orbifold flipped SU(5) model.

The following fields are non-singlet under SM gauge group: MSSM matter and Higgs
fields,

Ulﬁ, U15, Ull,

U3y, U3s, U3y, (4.17)
T6yg, T25, T21,
T4, U2s, (4.18)

vector-like pairs of SM matter-like representation,

T45,T43),
T6105 T6ﬁ)a
T65’ TGB)’

(
(
(
(T617,T61),
and vector-like pairs of G-exotics and E-exotics from the 1st and the 7th twisted sectors.
One pair of 7619 and T675 must have GUT scale VEV to break the flipped SU(5)
gauge group to the SM ones and then 765,765 and 76,776,y must also have the mass
of O(Mgur) not to spoil gauge coupling unification. ~ On the other hand, 745 and T4
do not need to have the GUT scale mass since they form a complete SO(10) multiplet.
Note that the nonzero PQ charges of T'619 and 7615 do not necessarily mean that the PQ
symmetry is broken at the VEV scale of those fields because the Goldstone boson of the
broken symmetry is eaten as a longitudinal degree of freedom of the massive gauge boson
and one linear combination of the original global symmetry and one of SU(5) x U(1)x can
remain as a surviving low energy global symmetry, which we called the 't Hooft mechanism
[B3]. However, to have such linear combination exist, 7619 and T615 must have a vector-like
pair of charges under the U(1)pg symmetry. Furthermore, the other fields which become
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massive at the GUT scale must have vector-like charges since we want to break the U(1)pq
at much lower scale.

Firstly, let us consider the flavor-independent PQ symmetry case. Denote U(1)pq
charges of SM non-singlet fields by

Q15 = QUlyg) = Q(U3yg) = Q(T615),
Qs =QUls) = Q(U3s) = Q(125),

Q1=QUl) =QU3:1) = Q(T21), (4.19)
Qs = Q(T45),
Qsy = Q(U25)

The cubic Yukawa couplings ﬁiﬁjg H, ﬁi5j5 m and 5i1j5 g are required to be invariant
under the symmetry we try to find, and we obtain the following relations,

Qs = —2Q1;
Qsn = —Q15 — Qs
Q1 =2Q — Qs. (4.20)

In addition to the SM Yukawa coupling, this model has another cubic coupling involving
SM non-singlets:

T651T45T21 +T65U2:T617 + T25T45761;. (4.21)
From the above couplings, we further get

Q(T43) = Qs = — Q15>
Q(T65) = —Q(T65) = Qs,
Q(T617) =—-Q(T615) =Q1 = 2Q15 — Qs. (4.22)

Since this determines all the U(1)pgcharges for SU(5) nonsinglets, we can calculate the
U(1)pq-SU(5)-SU(5) anomaly in terms of Q15 and Q5. One can easily check that it is just
zero, and thus we cannot have any approximate flavor-independent P(Q symmetry which
has the U(1)pq-QCD-QCD anomaly.

This leads us to the flavor-dependent case. However, the situation does not improve
very much in this case either. Since the down type Yukawa coupling 10,10;55 does
not reveal large hierarchy among the families, we have to assign the flavor-independent
symmetry for the field which take part in these Yukawa couplings. Thus, it still holds that

Qi = QUly) = Q(U34s) = Q(T61p)- (4.23)

Additionally, trilinear couplings give a strong restriction in choosing a PQ symmetry. If
a cubic combination of SM nonsinglet field is not invariant and that combination appears
with other singlet fields in the superpotential, one can assign the compensating U(1) charges
for the involved singlet fields so that the overall term is still invariant. However, for the
trilinear couplings of the SM fields which does not involve any singlet fields, this cannot
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be done. Therefore, such terms must be required to be invariant first. In the SM Yukawa
coupling combination, we have

T6751T675U25 + U31gU 175U 25 + T'615125T45
+U3sU11 U2 + U15U3,U25. (4.24)

Another consideration we should take care of is the overall mass hierarchy of the SM
matter fields. From the observed masses of quarks and leptons, we conclude that the
determinant of up-type quark mass matrix and lepton mass matrix must have at most
one factor of ]‘55 ST.

up-type quark Yukawa couplings must have no U(1)pq charge. In fact, which component

This requires at least one of 22-component and 33-component of the

is U(1)pq-noninvariant is just a matter of the choice: Ul or U3y is the lightest spectrum
(u-quark). Here, we discuss only the case where Ulyy is the lightest one. The resultant

U(1)pq concerning the above constraints is 4

Qp =1,

QB=Q3=q Q=0

Qi =Q1=2, Qi=2-gq,
Qsg =—-1—¢q, Qsg = -2,

where the superscript means the generation number. However, this assignment is not
successful. For example, the lowest order term of the 1l-component of lepton Yukawa
coupling is (s9)2U15U1,U25, and thus Q(s9) = —¢/2. Determinant of lepton mass matrix is
proportional to (s9)2, and so (s9) is 1073 Mj; to fit the phenomenological values. Therefore,
PQ symmetry breaking scale is around 10'® GeV in this assignment. Generally speaking,
the Frogatt-Nielsen type flavor-dependence of U(1)pq in this model is severely restricted
if we consider the PQ breaking symmetry scale around O(10'2 GeV) since the maximum
hierarchy we have in the low energy Yukawa coupling is only 1076 for the Qem= % quarks
and the first order hierarchy of O(10'2/10'8) would generate a too small ratio for m,/m;.

Up to now, we discussed the difficulty of obtaining the intermediate scale (~ 10! GeV)
for the PQ symmetry breaking scale. We must resort to the GUT scale PQ symmetry
breaking scale. For cosmological application, we may resort to the anthropic principle,
a la ref. [f. Then, not worrying about the PQ symmetry breaking scale, we look for
approximate global symmetries surviving up to a high order.

Up to D = 7 superpotential terms, we have a global symmetry which we call U(1)g1a.
This symmetry is flavor-independent, and so it belongs to the class described in Egs.
[{19), ([E20) and (f.29). As explained, it does not have U(1)44-SU(5)-SU(5) anomaly.
Low energy fields and their U(1)44 global charges are listed in Table . From Table [ and

“Here, we assign Q5 = 1 without loss of generality and Qf = 0 using U(1)x gauge symmetry.
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fields Qgia | fields  Qgia | fields  Qga | fields  Qga | fields  Qga
U3s 4 Uls 4 T2 4 | T45(3) -4 | T65(2) 4
T65(2) 4 U3y, 4 | Uy -4 | T2, -4 |T6,(2) 4
T615(2) 4 |T2, 2 |T2)5 1 s 4 s9(2) 4
s6(2) A | s22) A [ di(2) 4 | s55(2) A | 552 A4
cy 4 9 4 c? —4 (o 4 Cyf 4
Tlhia 4 | Thip 4 | The 4 | Tl 4 Tl 4
51 4 | T, 4 | T, 4 | Tl 4 | Tha 4
TTip 4 | Thrg 4 | Thr 4 | The 4 83 —4
7, 4 | T, A | Tt A4

Table 6: Non-vanishing U(1)ga charges. Fields ®(P) denotes the multiplicity P in case P > 1.

[, the trace of the nonabelian anomalies are given by

Tr (Qan TSU TSU(5)) = 9
Tr (Qan Tsoq0y Tsoqoy) = —9; (4.25)
Tr (Qgia Tsu(s) Tsues)) = O,
Tr (Qgia Tsooy Tsooy) = 4
We find that there is a gauge symmetry U(1)gy which is very close to U(1)g1a,
1 1 1 1 1
D4 =T+ - Ty — =Ty + ~Ts + = Zs.
Qglv 1+ g2t 523 = g Za+ g Zs + 5 Z6
The U(1)gyv charges are given in ([E28) except one field T2 for which Qga(T2] ) = —1.

At the D = 8 superpotential terms, U(1)ga is broken The following superpotential
terms at dimension 8 break U(1)g1a,

AW = F(other fields)T2" T2t T2,

016~ 016~ “010° (4‘26)

where

Fy = T610T25T45T45Cy + T610T615T45U25Cy + T45T65U25T65Cy
+ T25T45T45T65C, + T615U25T45T65Cy + T610T45T45T2,Cy
+ T610U25T45C5 T611 + T610T615CSCIC; + T25T65C5 590
+ T25T65Cy 5953 + T25T65C5 s55, + T25T65C5 55 s5
+ T45T45T2,C; T61 5 + T4d5U25Cy T617T615 + T4sU25C5 hohy
+ T45U25C5 hihg + T45U25Cy hahg + T45U25Cy hghy
+ T65T65CCCy + T25T65C0h3Cy + T25T65C5hCy
+ T2,Cy 82897617 + T2,Cy 59537617 + T2,Cy 55 55 T615
+T2,Cy 5353 T617 + COCLT611T61,C5 + T2,C0T617h3C5
+ T2,C9T617h1Cy (4.27)
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Fy = T45T45Cy df dy + +T45T45Cy5 df dy + TdsT45C0Cy hy + T45T45C2Cy hy
+ Cy s0dy s3di + Cy $9s3de dd + Cy sgdy df s3 + Cy shdydd s
+ Cy s2sddy dy + Cy s9s3dy dy + Cy s2sdfdy + Cy df sydy sy
+ Cy s9s3dg dy + Cy s3s0dd dy + Cy s9s9dd dy + Cy s3dd sy dy
+ Cy df sisydy +Cy sdy sydy + Cy s3sydy dy + Cy s3dddy s3
+ Cy df sdy s3 + Cy s2dy dy 53 + Cy df s3dy s3 + Cy sgdy dy s3
(4.28)

F3 = CJCy s3s3hg + CICy s93ho + COD; s3dy ha + CRCy 55 55 ha

+ C{Cy 5385 ho + CYCy 8Qs2ha + CQ Dy s3dy hy + CECy s3s5 hy

+ CYDy s§d3 hy + CJCy 82%h9 + CYD; 53 dy ho + CL Dy s3d3 ha

+ CJCy 5355 ho + CYCy s2sghy + CYCy s959hy + CYCy 54 55 hy

+ CYDy s3dz hy + CCy 5§53 hy + CYdy dy hiCy + CYdy dy haCy

+ CJd} dy hsCy + CeCOhahsCy + CYdy dy hiCy + CYdy dy hiCy

+ CICRhahiCy + CYCh1hoCy + CRd dy h3Cy + CICRhahsCy

+ CICRh3hyCy + CYCIh hyCy (4.29)

For the sake of showing the existence of vacua, let us choose only two kinds of VEVs,

one kind carrying only the U(1)., and the other kind carrying only the U(1)ga charge. In

this way, we may separate two axion scales.

From the Yukawa couplings and mass terms for the vectorlike pairs, we require near-

GUT-scale VEVs to the fields:

h1(0,0), h1(0,0), h3(0,0), h3(0,0),

C8(=3,0), C3(4,0), C2(4,0),

$9(=4,0), 57(~6,0),

(s3(5,0) or s3(5,0),but not both),
(s7(—4,0) or s§(—4,0),but not both), (4.30)

where (Qan,Qgia) charges are shown. VEVs of these fields break U(1),, only. To break
U(1)gia, we can consider the following

59(0,4),59(—4,4),s3(1, —4). (4.31)

Using (£.25), domain wall numbers of the U(1)an and U(1)ga axions can be shown to
be 9 and 1, respectively.

5. Axion-photon-photon coupling

The PQ mechanism employs a global symmetry. The R symmetry is not considered for a
Peccei-Quinn mechanism. This is because if we try to embed the axion field in the phase of
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a scalar field then this phase does not carry a SUSY parameter. So for the PQ mechanism
gauginos are neutral.

Let us consider the QCD axion and one hidden sector axion corresponding to SO(10)’.
When we have two axions, we must consider the axion mixing and the cross theorem
B9, [[4]. The higher axion potential corresponds to a lower axion decay constant.

As discussed in the previous section, we have GUT scale VEVs for the fields of ({.30)
and intermediate scale VEVs M for the fields of (-31)). In fact, s and some other fields
which appear in up-type Yukawa couplings have the VEV scale M} ; somewhat larger than
M but smaller than Mgyt for a successful electron mass and for a ratio of up and top
quark masses. The GUT scale VEVs and the intermediate scale VEVs are set as

Fy ~10%GeV, Fg~10"GeV (5.1)

where F'4 and Fg correspond to axion decay constants derived from spontaneous symmetry
breaking of U(1)a, and U(1)g1a, respectively.

The confining group we are interested in is SU(3).xSO(10)’. We assume that a sub-
group of SO(10) such as SU(4) or SO(8) confines around 1011~13 GeV.

The early example of the axion mixing is between the MI axion and the MD breathing

mode axion coupling as [B(],

1
327T2FMI

1

FE+FF)4 ———
aa( + )+ 3972

ag(FEF — F'F').

But the couplings in our case are more complicated. The phases of Cg(—?), 0), 08(4, 0),
CJ(4,0), and s*(0,4), s3(—4,4), s(1, —4), for example couple according to their U(1),, and
U(1)gia charges. The axion decay constant can be calculated following the discussion of
section fl. Because of the constraints on Yukawa couplings, most probably both axions
have the decay constants at the GUT scale.

Here, however, for the simplicity of illustration with relatively complex U(1),, and
U(1)ga charges, let us choose VEVs of (C2(4,0)) = V4 and (s§(—4,4)) = V» for global
symmetry breaking. The relation s§ ~ —2s%s9 of Subsubsec. has been an illustrative
example for flat directions, and here we present the coupling calculation to show the validity
of cross theorem and the calculational method of axion-photon-photon coupling with a field
having both global charges. So the VEV scale of s is chosen at an arbitrary scale here in
contrast to the discussion in Subsubsec. f.3.4. The U(1),, breaking direction with C{ and

0
VRVE 2V =V (5.2)

sy is
and the U(1)ga breaking direction is
\42V2 = 4v5. (5.3)

The normalized phase component for the U(1),, symmetry is

N 4V1a(; — 4V2as

Aan ]
a /42‘/12 +42V22

= cos Oynac — sinO,pa,. (5.4)
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The component orthogonal to a,, can be written as
Gortho = Sin Banac + cos Oanas, (5.5)
or ac and ay are given by
ac = €08 Oanlan + 8in O aorthe, Gs = — SinBanaan + €08 Banortho- (5.6)

In the Vi > V5 limit, we have

\%
cos Oy ~ 1, sinb,, ~ 22 (5.7)
i
The phase component for the U(1)ga symmetry is
agia = the phase of s = as. (5.8)

Since U(1)an—SU(5)-SU(5) and U(1),,~SO(10)'~SO(10)" anomalies are —9 units, and
U(1)ga-SU(5)-SU(5) is 0 and U(1)ga-SO(10)’'~SO(10)" anomaly is 4, we obtain the fol-
lowing couplings

N1 e 1
—glan ) _— _(FF 4 F'F)+ (4584 (F'F")
v

3272 4Vy ) 3272
1 Gan - Gan Qg A ! £l
= —-9— | FF —-9— +4—=- | I'F 5.9
32m? < v*) e < v 4v§> (5:9)

from which we obtain a potential proportional to

_AA@CD cos (;L/;) — A3mcos < dan a{i—?)

V/9
Al Lac) - a3 Lo —La (5.10)
~ cos [ —a —Aimcos | —ac — —a .
QCD i c h 7 c 2
where we used v v
and took the limit
Vo> Vs

Thus, the hidden sector axion decay constant is

Fp= (5.12)

From Eq. (p.I0), the axion mass matrix is estimated as

A%CD mAi mAi
2 F? F2 TR
M? LR (5.13)
TRy F2
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where we simplified the confining scales as Agcp and Ay, and m is the mass scale of the
hidden sector quarks. Introducing hierarchically small parameters

F3 Agen
€ = —5 = 5 514
we obtain the larger hidden sector axion mass and the smaller QCD axion mass
A3
m% ~ "}2}
2 ~ 2acp
Ma,QCD = T F2

which shows the validity of the cross theorem on the axion masses and decay constants.

Until now in this section, we treat U(1)g14 as an exact global symmetry. As mentioned,
this symmetry is broken at order dimension 8 in the superpotential and thus we have to
discuss the effect of its breaking on the axion. With the symmetry breaking terms, the
vacuum may be shifted to a CP-violating one. We first would like to comment here that
the argument on the effect of explicit axionic symmetry breaking by higher dimensional
terms in [RY] does not apply to our case. It is because QCD axion in our model is mainly
the axion out of the exact global symmetry U(1)an and U(1)ga breaking terms affects QCD
vacuum angle only in an indirect way. The potential of the axions with consideration of
the breaking terms is

Qan Qan  QglA (6m)? 9
e Zan ) A3 L[ Zan  TElA — 0, F 5.16
QCD €OS < T > 7,11 COS 7 + 7 + 5 (agia — OuorF2)”, (5.16)
where we denote the magnitude of the symmetry breaking term by (dm)? and the shift
of the vacuum angle by 6y,.. In the approximation that the shift is small, we linearize

0V/0a = 0. Then,

Abep | mA3 A2m
F? + F? I3 ( Gan > _ ( 0 ) (5 17)
A3m A3m 2 - 2 : :
ATy RN
3 3
We have two cases : (i) dm? > A};%, (ii) om? < A;—Q” For the case (i), the QCD vacuum
2 2

angle shift is

aan
— ~ —by. 5.18
Fl br ( )
So this cannot be used as a QCD axion. But if it belongs to the case (ii), we have
Qan (6m)?
Fy

which can be sufficiently small.
Let us now proceed to calculate the axion-photon-photon coupling. The global anomaly
is
U(1),, — Flik —F 0 =15 (5.20)
U(1)gp — Fli = F0 0 (5.21)
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Figure 2: Experimental bound from various experiments, especially including CAST 2003 data.
This figure is taken from the result paper of CAST experiment @] Here,we show the prediction
of Z15 model by the thick line. The blue band is the 20 % theoretical error of ref. [@]

We choose U(1)an and U(1)ga for the axions. For illustration we present again for the case
of CY and Y.
For the electromagnetic field Fy, we have the following anomaly

1 —15a,n -
(%FemFenJ

3272 V
1 [ —15(4ac + 28 \/eay) _ 1 [—15ac .
~ FonFom =~ FonFom 5.22
3272 ( 4 emee 3272 Vi emre (5.22)
1 5 aQcop ~
— 2 FooFo 5.23
3272 (3 F ) emee (5:23)

whence we obtain the following high energy value for the axion-photon-photon coupling,

2
- aQCD € ~
‘Ca’Y’Y = CG’Y’Y FaQQCD (327‘1’2 FemFem> (524)
where
Cary =3, Faqep = Fi. (5.25)

,27,



The axion-photon-photon coupling at low energy takes into account the QCD chiral sym-
metry breaking and we obtain

Cayy = Cayy — CysB =~ —0.26 (5.26)

where we take c,sp ~ 1.93. The value c,sp depends on the current quark mass ratio
Z = my/myg, the instanton contribution factor £ = mg/Ainstanton, and rqs = mgq/ms. For
¢E=0.1and rgs = 2—10, we obtain

2(4+1.052)

5.27
14+1.05Z2 ( )

CxSB =

Inclusion of one-loop effects and second order chiral perturbation give sizable contributions
5
9o
effect up to the 20% level, we obtain a band for ¢,sp, i.e. ¢,sp = 1.76 ~ 2.26. Thus, if

to squared meson masses [l]. For Z = 3, we obtain c,sp = 1.93. With the next order
Cayy turns out to be sizable and F, is the intermediate scale, then the QCD axion can be
detected. In our case, however, Fj is too large, i.e. far outside the box of Fig. B Fig. P
shows the current experimental search limit on ¢,,~ and the prediction point of the present
model with the band shown. The solid line corresponds to c,sp = 1.93. It is the first
reliable calculation of the axion-photon-photon coupling. The cavity detectors [[if] and the
high Z Rydberg atom Kyoto axion detector [f7] already used this kind of axion-photon-
photon interaction. But the recent CAST detector [BI] seems to be the most promising one
for detection of a very light axion in the region F, ~ 10! GeV. The detectability of axion
using the ¢4y, coupling was proposed by Sikivie []. However, the magnitude of F..qcp
in the model we studied is at the GUT scale and it cannot be detected in these kinds of
detectors.

What will be the case if we use VEVs of all the fields instead of just C§ and s? We have
discussed at length for finding a model having U(1)4a-QCD-QCD anomaly consistently
with the breaking scheme of the flipped SU(5). More importantly, the hidden sector axion
potential is higher than the QCD axion potential and the cross theorem dictates that the
decay constant of the QCD axion is the breaking scale of U(1)a,. Thus, in our model the
QCD axion cannot be made detectable.

Finally, we mention that the hidden sector axion potential can be made smaller than
the QCD axion potential by making the hidden sector quark mass extremely small in which
case the cross theorem acts in the other direction. In this case, we can expect that the
QCD axion can fall in the detectable region. However, we have not found any approximate
global symmetry possessing U(1)g14-QCD-QCD anomaly and hence this desirable scenario
is not realized in the present model.

6. Conclusion

In this paper, we presented a general method to house a QCD axion in string-derived
MSSM models. One related objective is to make it observable in ongoing or future axion
search experiments since the axion derived from superstring might be the most significant
prediction of string. We presented the criteria that should be satisfied in these models.
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Since the magnitude of the axion decay constant is essential in the solution of the strong
CP problem, cosmology, and in axion search experiments, we presented a general formula
for the decay constant in Eqs. (B.7) and (R.9). We must consider the full Yukawa coupling
structure of matter fields toward this objective. So far, this kind of full Yukawa coupling
structure has not been studied except in a recent Zio_; model ] Here the Yukawa
coupling has been given completely, which made it possible for us to pick up an approximate
global symmetry so that a phenomenologically allowed QQCD axion results and the strong
CP problem is solved. However, the resulting axion is not detectable due to F, ~ 106
GeV. This might be a most probable situation in string models. It will be very interesting
if one can find a string model with an observable QCD axion.
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